# Role of conditional entropy in experiments of Landauer principle

D. Chiuchiú<sup>1</sup>, M. C. Diamantini<sup>1,2</sup>, L. Gammaitoni<sup>1,2</sup>

<sup>1</sup>NiPS Laboratory - UNIPG <sup>2</sup>INFN sezione di Perugia

Landauer Summer School - Perugia - 18/7/14





Perugia — 18/7/14

#### 1 Introduction

2 Conditional Entropy

**3** Gaussian Example

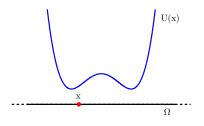
Davide Chiuchiú (UNIPG)

Perugia — 18/7/14

Landauer Summer School 2014 2 / 10

æ

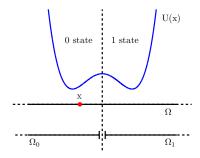
#### Bit Coding General Framework for 1-Dim Systems



- 1-Dimensional system
  - Each x value is a microstate
  - $\Omega$  is the set of all possible microstates
  - U(x) bistable and symmetric potential

# Bit Coding

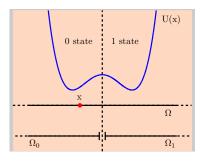
General Framework for 1-Dim Systems



- 1-Dimensional system
  - Each x value is a microstate
  - $\Omega$  is the set of all possible microstates
- U(x) bistable and symmetric potential
- Subdivide  $\Omega$  in  $\Omega_0$  and  $\Omega_1$
- $x\in\Omega_0,\Omega_1\equiv$  bit in the 0,1 state

# Bit Coding

General Framework for 1-Dim Systems



- 1-Dimensional system
- Each x value is a microstate
- $\Omega$  is the set of all possible microstates
- U(x) bistable and symmetric potential
- Subdivide  $\Omega$  in  $\Omega_0$  and  $\Omega_1$
- $x\in\Omega_0,\Omega_1\equiv$  bit in the 0,1 state
- Heath bath a temperature T

x fluctuates  $\Rightarrow$  We describe its stochastic properties through a Probability Density Function P(x).

We than define the probabilities of being in the 0-1 logic states

$$P_0 = \int_{\Omega_0} P(x) dx, \quad P_1 = \int_{\Omega_1} P(x) dx$$

## Entropies and Landauer Principle

Gibbs thermodynamical entropy

$$S_G = -K_B \int_{\Omega} P(x) \log P(x) dx$$

Shannon information entropy

$$S_S = -K_B \sum_{i=0,1} P_i \log P_i$$

#### Landauer Principle

Computation is a physical transformation that changes  $S_G$  and  $S_S$ . Heat production for this transformation obeys Clausius theorem

 $Q \geq -T\Delta S$ 

Davide Chiuchiú (UNIPG)

## Entropies and Landauer Principle

Gibbs thermodynamical entropy

$$S_G = -K_B \int_{\Omega} P(x) \log P(x) dx$$

Shannon information entropy

$$S_S = -K_B \sum_{i=0,1} P_i \log P_i$$

#### Landauer Principle

Computation is a physical transformation that changes  $S_G$  and  $S_S$ . Heat production for this transformation obeys Clausius theorem

$$Q \ge -T\Delta S_G$$
  

$$\Delta S_G = \Delta S_S + \Delta S_{cond}$$
(1)

Warning1: Up to now  $\Delta S_{cond} = 0$  was used with no clear justification. Warning2: There is no simple representation of  $S_{cond}$  and  $\Delta S_{cond}$ .

(1) T. Sagawa J. Stat. Mech. (2014) P03025

For a system with bistable U(x), it is reasonable that, in experiments, non-equilibrium P(x) are functions with two peaks. We write

$$P(x) = P_a \eta_a(x) + P_b \eta_b(x)$$

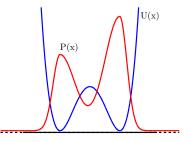
 $\eta_a$ ,  $\eta_b$  properties:

- peak functions.
- thay are non-negative with supports  $\Omega_a$ ,  $\Omega_b$  respectively.

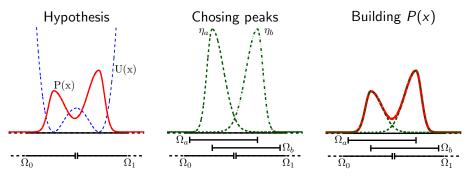
• 
$$\int_{\Omega_a} \eta_a dx = \int_{\Omega_b} \eta_b dx = 1$$

Thanks to this last one

- $P_a + P_b = 1$
- *P<sub>a</sub>* and *P<sub>b</sub>* are the probability that a microstate *x* belongs to *η<sub>a</sub>* or *η<sub>b</sub>*



# The sample structure of P(x) - [2]



Note that:

- Each peak has its own shape;
- Peaks significatively overlap near the boundary between Ω<sub>0</sub>, Ω<sub>1</sub>;
- $\Omega_a$  and  $\Omega_b$  may not coincide with  $\Omega_0$ and  $\Omega_1 \Rightarrow (P_a, P_b)$  is not  $(P_0, P_1)$ .

$$P_{0} = P_{a} \int_{\Omega_{a} \cap \Omega_{0}} \eta_{a} dx + P_{b} \int_{\Omega_{b} \cap \Omega_{0}} \eta_{b} dx$$
$$P_{1} = P_{a} \int_{\Omega_{a} \cap \Omega_{1}} \eta_{a} dx + P_{b} \int_{\Omega_{b} \cap \Omega_{1}} \eta_{b} dx$$

## A simple formula for $S_{cond}$

$$S_{cond} = S_G - S_S = S_{ex} + S_{sh} + S_{ov}$$

 $S_{ex} = -K_B P_a \log P_a - K_B P_b \log P_b + K_B P_0 \log P_0 + K_B P_1 \log P_1$  $S_{ex} \text{ is the entropic measure of the error committed by exchanging } (P_a, P_b) \text{ with } (P_0, P_1).$ 

$$S_{sh} = P_a S_a + P_b S_b$$
  
 $S_a = -K_B \int_{\Omega_a} \eta_a \log \eta_a dx$   
 $S_{sh}$  gives the entropic measure of  $\eta_a$  and  $\eta_b$  shapes

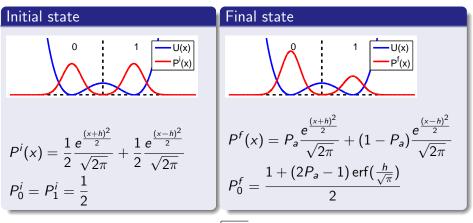


$$S_{ov} = P_a I(\eta_a, \eta_b, \frac{P_b}{P_a}) + P_b I(\eta_b, \eta_a, \frac{P_a}{P_b})$$
$$\frac{I(\eta_a, \eta_b, q)}{K_B} = -\int_{\Omega_a \cap \Omega_b} \eta_a \log\left(1 + q \frac{\eta_b}{\eta_a}\right) dx$$
$$S_{ov} \text{ is the entropic measure of } \eta_a$$
and  $\eta_b$  overlap in  $P(x)$ 

η

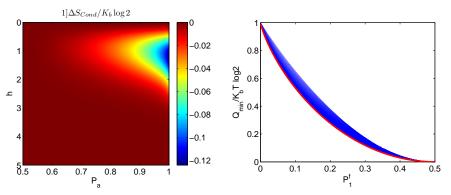
## Gaussian Example

#### We reset a bit of information



Free parameters:  $P_a$  and  $h \ (h \approx \sqrt{\frac{\Delta U}{K_B T}})$ 

## Some results



- $\Delta S_{cond} \neq 0$
- for  $h \approx 1 \left[\frac{\Delta U}{K_B T} \approx 1\right]$ ,  $\Delta S_{cond}$  can become up to 25% of  $\Delta S_G$ .
- $\Delta S_S$  is insufficient to characterize minimum heat production

- Brief introduction to  $\Delta S_{cond}$ , writing it in a simple and intuitive way for bistable systems.
- Discussed the implications of  $\Delta S_{cond}$  to minimum heat production with a simple example based on gaussian peaks.

#### Further readings

- D. Chiuchiú, M. C. Diamantini, L. Gammaitoni. *Role of conditional* entropy in experimental tests of Landauer Principle., arXiv:1406.2562
- T. Sagawa *Thermodynamic and Logical Reversibilities Revisited* J. Stat. Mech. (2014) P03025

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >