Role of conditional entropy in experiments of Landauer principle

D. Chiuchiú ${ }^{1}$, M. C. Diamantini ${ }^{1,2}$, L. Gammaitoni ${ }^{1,2}$
${ }^{1}$ NiPS Laboratory - UNIPG ${ }^{2}$ INFN sezione di Perugia

Landauer Summer School - Perugia - 18/7/14

Outline

(1) Introduction

(2) Conditional Entropy

(3) Gaussian Example

Bit Coding

General Framework for 1-Dim Systems

- 1-Dimensional system
- Each x value is a microstate
- Ω is the set of all possible microstates
- $U(x)$ bistable and symmetric potential

Bit Coding

General Framework for 1-Dim Systems

- 1-Dimensional system
- Each x value is a microstate
- Ω is the set of all possible microstates
- $U(x)$ bistable and symmetric potential
- Subdivide Ω in Ω_{0} and Ω_{1}
- $x \in \Omega_{0}, \Omega_{1} \equiv$ bit in the 0,1 state

Bit Coding

General Framework for 1-Dim Systems

- 1-Dimensional system
- Each x value is a microstate
- Ω is the set of all possible microstates
- $U(x)$ bistable and symmetric potential
- Subdivide Ω in Ω_{0} and Ω_{1}
- $x \in \Omega_{0}, \Omega_{1} \equiv$ bit in the 0,1 state
- Heath bath a temperature T
x fluctuates \Rightarrow We describe its stochastic properties through a Probability Density Function $P(x)$.
We than define the probabilities of being in the 0-1 logic states

$$
P_{0}=\int_{\Omega_{0}} P(x) d x, \quad P_{1}=\int_{\Omega_{1}} P(x) d x
$$

Entropies and Landauer Principle

Gibbs thermodynamical entropy

$$
S_{G}=-K_{B} \int_{\Omega} P(x) \log P(x) d x
$$

Shannon information entropy

$$
S_{S}=-K_{B} \sum_{i=0,1} P_{i} \log P_{i}
$$

Landauer Principle

Computation is a physical trasformation that changes S_{G} and S_{S}. Heat production for this transformation obeys Clausius theorem

$$
Q \geq-T \Delta S
$$

Entropies and Landauer Principle

Gibbs thermodynamical entropy

$$
S_{G}=-K_{B} \int_{\Omega} P(x) \log P(x) d x
$$

Shannon information entropy

$$
S_{S}=-K_{B} \sum_{i=0,1} P_{i} \log P_{i}
$$

Landauer Principle

Computation is a physical trasformation that changes S_{G} and S_{S}. Heat production for this transformation obeys Clausius theorem

$$
\begin{align*}
Q & \geq-T \Delta S_{G} \\
\Delta S_{G} & =\Delta S_{S}+\Delta S_{c o n d} \tag{1}
\end{align*}
$$

Warning1: Up to now $\Delta S_{\text {cond }}=0$ was used with no clear justification. Warning2: There is no simple representation of $S_{\text {cond }}$ and $\Delta S_{\text {cond }}$.
(1) T. Sagawa J. Stat. Mech. (2014) P03025

The sample structure of $P(x)$

For a system with bistable $U(x)$, it is reasonable that, in experiments, non-equilibrium $P(x)$ are functions with two peaks. We write

$$
P(x)=P_{a} \eta_{a}(x)+P_{b} \eta_{b}(x)
$$

η_{a}, η_{b} properties:

- peak functions.
- thay are non-negative with supports Ω_{a}, Ω_{b} respectively.
- $\int_{\Omega_{a}} \eta_{a} d x=\int_{\Omega_{b}} \eta_{b} d x=1$

Thanks to this last one

- $P_{a}+P_{b}=1$

- P_{a} and P_{b} are the probability that a microstate x belongs to η_{a} or η_{b}

The sample structure of $P(x)$ - [2]

Building $P(x)$

Note that:

- Each peak has its own shape;
- Peaks significatively overlap near the boundary between Ω_{0}, Ω_{1};
- Ω_{a} and Ω_{b} may not coincide with Ω_{0} and $\Omega_{1} \Rightarrow\left(P_{a}, P_{b}\right)$ is $\operatorname{not}\left(P_{0}, P_{1}\right)$.

$$
\begin{aligned}
P_{0} & =P_{a} \int_{\Omega_{a} \cap \Omega_{0}} \eta_{a} d x+\underset{\Omega_{b} \cap \Omega_{0}}{P_{b}} \sum_{b} d x \\
P_{1} & =P_{a} \int_{\Omega_{a} \cap \Omega_{1}} \eta_{a} d x+\underset{\Omega_{b} \cap \Omega_{1}}{P_{b} \int_{b}} \eta_{b} d x
\end{aligned}
$$

A simple formula for $S_{\text {cond }}$

$$
S_{c o n d}=S_{G}-S_{S}=S_{e x}+S_{s h}+S_{o v}
$$

$$
S_{e x}=-K_{B} P_{a} \log P_{a}-K_{B} P_{b} \log P_{b}+K_{B} P_{0} \log P_{0}+K_{B} P_{1} \log P_{1}
$$

$S_{e x}$ is the entropic measure of the error committed by exchanging (P_{a}, P_{b}) with $\left(P_{0}, P_{1}\right)$.

$$
\begin{aligned}
S_{s h} & =P_{a} S_{a}+P_{b} S_{b} \\
S_{a} & =-K_{B} \int_{\Omega_{a}} \eta_{a} \log \eta_{a} d x
\end{aligned}
$$

$S_{s h}$ gives the entropic measure of η_{a} and η_{b} shapes

Gaussian Example

We reset a bit of information

Initial state

Final state

$P^{f}(x)=P_{a} \frac{e^{\frac{(x+h)^{2}}{2}}}{\sqrt{2 \pi}}+\left(1-P_{a}\right) \frac{e^{\frac{(x-h)^{2}}{2}}}{\sqrt{2 \pi}}$

$$
P_{0}^{f}=\frac{1+\left(2 P_{a}-1\right) \operatorname{erf}\left(\frac{h}{\sqrt{\pi}}\right)}{2}
$$

Free parameters: P_{a} and $h\left(h \approx \sqrt{\frac{\Delta U}{K_{B} T}}\right)$

Some results

1] $\Delta S_{\text {Cond }} / K_{b} \log 2$

- $\Delta S_{\text {cond }} \neq 0$
- for $h \approx 1\left[\frac{\Delta U}{K_{B} T} \approx 1\right], \Delta S_{\text {cond }}$ can become up to 25% of ΔS_{G}.
- ΔS_{S} is insufficient to characterize minimum heat production

Conclusions

- Brief introduction to $\Delta S_{\text {cond }}$, writing it in a simple and intuitive way for bistable systems.
- Discussed the implications of $\Delta S_{\text {cond }}$ to minimum heat production with a simple example based on gaussian peaks.

Further readings

- D. Chiuchiú, M. C. Diamantini, L. Gammaitoni. Role of conditional entropy in experimental tests of Landauer Principle., arXiv:1406.2562
- T. Sagawa Thermodynamic and Logical Reversibilities Revisited J. Stat. Mech. (2014) P03025

